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ABSTRACT 
 
This paper explores the Quality of Service (QoS) performance of two widely used Software-Defined 

Networking (SDN) controllers, POX and Ryu, using Mininet for network simulation. SDN, a transformative 

approach to network architecture, separates the control and data planes, enabling centralized 

management, improved agility, and cost-effective solutions. The study evaluates key QoS parameters, 

including throughput, delay, and jitter, to understand the capabilities and limitations of the POX and Ryu 
controllers in handling traffic under diverse network topologies. 

 

The research employs a systematic methodology involving the design of custom network topologies, 

implementation of OpenFlow rules, and analysis of controller behavior under simulated conditions. Results 

reveal that while POX offers simplicity and ease of use, making it suitable for smaller-scale applications 

and experimentation, Ryu provides superior scalability and adaptability for more complex network 

environments. 

 

The findings highlight the strengths and challenges of each controller, providing valuable insights for 

organizations seeking to optimize SDN deployment. This study contributes to the growing body of 

knowledge on SDN technologies and their role in building scalable, efficient, and resilient network  
infrastructures. 
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1. INTRODUCTION 
 
In today’s rapidly advancing technological landscape, networks have become increasingly 

complex. Traditional network architectures that require significant resources for updates or even a 

complete overhaul to support expanding business needs are no longer viable options. Businesses 
now seek networks that offer scalability, flexibility, and redundancy to support future growth. 

These complex networks involve numerous switches, routers, and end devices. As a result, 

making changes to the network requires manually adjusting configurations on all devices, which 

is often unfeasible for network administrators. 
 

To address this challenge, the growing trend of automated network management has led to the 

introduction of Software-Defined Networking (SDN) [1]. SDN has revolutionized network 
management by decoupling the control and data planes of network devices. In traditional network 

architectures, the data and control planes are integrated within network devices, necessitating 

constant communication and updates about network traffic. In contrast, SDN separates these 
planes, with the control plane typically centralized and managed by a software-based controller, 

while the data plane consists of network devices that handle traffic based on the controller’s 

instructions [2]. This architectural separation enables SDN to offer several advantages in complex 
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Networks, including centralized management, reduced operational costs, simplified network 

configuration, increased agility and flexibility, and improved scalability [3]. A simplified 

representation of SDN architecture is shown in Fig. 1. At the top of the architecture, applications 

interact with the SDN controller via the northbound interface, which allows applications to define 
network policies and behaviors through APIs. The SDN controller, serving as the central 

intelligence of the network, manages traffic flows and network resources by communicating with 

underlying network devices through the southbound interface. This interface uses protocols like 
OpenFlow to relay instructions to switches, routers, and other devices. This architecture enhances 

network flexibility, programmability, and efficiency by enabling dynamic adjustments to network 

conditions based on application needs. 
 

 
 

Figure1. SDN Architecture 

 

Organizations can greatly benefit from Software-Defined Networking (SDN) by gaining better 

control over their network infrastructure, improving efficiency, and reducing costs. SDN 

centralizes network management, making it easier to configure, monitor, and maintain networks, 
especially as they grow [4]. By separating the control plane from the data plane, SDN enables 

more flexible and dynamic network management, allowing businesses to respond to changing 

demands and optimize traffic flow quickly. It also lowers operational costs by automating 
network provisioning, enhancing resource allocation, and reducing manual configuration errors. 

SDN's ability to integrate multiple vendors and technologies within a unified framework 

improves interoperability and reduces dependency on a single vendor, offering organizations a 

more adaptable and cost-effective solution. Moreover, SDN enhances security by providing 
granular control over network traffic and enabling a rapid response to potential threats. 

Ultimately, SDN helps organizations build agile, scalable, and efficient networks that support 

business growth and innovation [5]. 
 

The SDN controller is the central component of any SDN architecture, as it is responsible for 

managing and controlling the network’s behavior by communicating with the data plane devices 
such as routers and switches and making decisions regarding traffic flow and network policies 

[6]. Some of the most widely used SDN controllers include NOX [7], POX [8], Floodlight [9], 

OpenDaylight [10], ONOS [11], and Ryu [12]. In addition to these, many other controllers exist 

in literature. [13] presents a comprehensive list of controllers with their features. 
 

The choice of an SDN controller is highly dependent on the specific priorities and requirements 

of the organisation. For example, large enterprises with complex network topologies might prefer 
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controllers like OpenDaylight or Floodlight due to their scalability and advanced features, while 
smaller organizations or those with less complex network needs might choose a more lightweight 

controller like Ryu or POX. Moreover, the controller must align with the organisation’s 

connectivity needs, such as support for various network protocols, compatibility with hardware 

devices, and the ability to manage high levels of traffic. Factors like security, ease of integration, 
and the availability of developer tools for customisation also play crucial roles in controller 

selection. Ultimately, selecting the right SDN controller ensures that the network can evolve with 

the organisation’s changing demands, enhancing both performance and agility. In this research, 
Quality of Service (QoS) comparison is performed for two selected SDN controllers: POX and 

Ryu. QoS comparison of SDN controllers is important as it directly impacts the performance, 

reliability, and user experience of a network. Poor QoS can lead to packet loss, jitter, and delay, 
which negatively impact the overall user experience. Moreover, different applications have 

different QoS requirements based on their latency and bandwidth requirements. Therefore, a 

thorough understanding of QoS parameters of SDN controllers is crucial for selecting the right 

SDN controller for a network. 
 

The rest of the paper is structured as follows. Section 2 presents the background to the research 

presented in this paper. In Section 3, the methodology is presented. Results and analysis are 
presented in Section 4. Section 5 presents the conclusion. 

 

2. BACKGROUND 
 

QoS in computer networks is a broad concept that can be understood from two perspectives: the 
user perspective and the network perspective. From the user perspective, QoS refers to the quality 

of service experienced for a subscribed service, typically evaluated using parameters such as 

latency, jitter, and packet loss. This perspective is crucial for assessing network performance and 
user satisfaction. From the network perspective, QoS is the capability of the network to deliver 

the level of service perceived by the end user. Achieving this requires two key capabilities: 

differentiating between various types of traffic—such as data, video, and audio—and applying 
appropriate policies to ensure optimal performance [14]. In the context of this research, QoS is 

primarily considered from the end-user perspective. 

 

QoS is particularly important in SDN environments, where diverse applications—ranging from 
real-time video streaming to large-scale data transfers—have varying performance requirements. 

The SDN controller plays a critical role in traffic management and resource allocation, ensuring 

that network policies align with QoS demands [15]. Effective controller performance is essential 
to maintaining high levels of network efficiency and user satisfaction. 

 

Several SDN controllers have been developed to address different network requirements, with 

POX and Ryu being two widely studied options. These lightweight controllers are well-suited for 
academic research and experimental setups. 

 

POX, one of the earliest SDN controllers, is designed for simplicity and rapid prototyping [8]. 
Written in Python and available as open-source software, POX provides an accessible platform 

for educational environments and small-scale networks. Derived from its predecessor NOX [7], 

POX facilitates communication with network devices through the OpenFlow protocol, currently 
supporting version 1.0, with potential upgrades to version 1.3 in the future to align with industry 

standards. Despite its limited scalability and advanced features, POX remains valuable for 

understanding the core principles of SDN [16]. 

 
In contrast, Ryu offers a more versatile and feature-rich platform, supporting multiple OpenFlow 

versions and other protocols. This flexibility allows developers to customise and integrate new 
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functionalities, making Ryu suitable for complex network scenarios such as traffic engineering, 
resource optimisation, and policy enforcement [12]. Like POX, Ryu is also developed in Python 

and is open-source under the Apache 2.0 license [17]. Hosted on GitHub, Ryu is actively 

maintained by the community, ensuring continuous improvements and accessibility. RYU 

provides a flexible platform for network traffic management through well-defined application 
programming interfaces (APIs), allowing network administrators to implement and control 

policies effectively [2]. Moreover, RYU supports business-oriented functionalities such as user 

account management and policy enforcement. 
 

Comparing the QoS performance of POX and RYU is significant for several reasons. First, these 

controllers represent different ends of the spectrum in terms of capabilities and complexity. POX, 
being lightweight and straightforward, provides insights into baseline QoS performance, while 

RYU’s advanced features and scalability make it suitable for analysing complex network 

environments. Second, both controllers are well-documented and widely used in research, 

facilitating comprehensive comparisons. Third, evaluating their QoS performance helps in 
selecting the appropriate controller based on specific network requirements, particularly for 

applications with strict latency or bandwidth demands. 

 
QoS evaluation typically involves analysing key parameters such as throughput, latency, jitter, 

and packet loss, which directly impact network reliability and user experience. For example, real-

time applications like video conferencing and online gaming require low latency and minimal 
jitter, whereas data-intensive tasks such as file transfers prioritise high throughput. Comparing 

POX and RYU across these parameters provides valuable insights for optimising network 

performance. 

 

2.1. Performance Comparison of POX and Ryu 
 
Several studies have compared the performance of POX and RYU controllers across various 

parameters. Their comparative evaluation highlights differences in throughput, latency, jitter, and 

packet loss, with each controller demonstrating strengths in specific contexts. 

 
Studies such as [18] have shown that RYU outperforms POX in terms of throughput and latency 

in different topologies using the Mininet environment. Similarly, [19] found that RYU offers 

superior QoS by minimising average packet loss and delay while running the Spanning Tree 
Protocol (STP). Additional research by [20] and [16] has reinforced these findings, concluding 

that RYU provides better delay, jitter, bitrate, and overall performance in high-throughput 

applications. Conversely, some studies favour POX in specific scenarios. [17] evaluated both 

controllers across jitter, throughput, packet loss, and packet delivery ratio, concluding that POX 
outperforms RYU. Similarly, [21] observed that POX exhibits lower delay and jitter compared to 

RYU. In a hybrid network setting involving both normal and SDN switches, [22] found that POX 

delivered superior throughput, although other performance metrics were not considered. 
 

Some comparative studies have found that the performance of POX and RYU varies depending 

on network conditions. [23] demonstrated that RYU provides better latency, while POX excels in 
throughput in Simple-Tree-Based and Fat-Tree-Based networks. Similarly, [24] found that while 

POX offers better throughput, RYU achieves a higher packet delivery ratio when tested using 

Dijkstra’s shortest path algorithm. According to [25], POX achieves higher throughput, whereas 

RYU offers lower delay, with both controllers showing similar results in packet loss. 
 

It is important to note that performance variations in these studies may also stem from differences 

in data collection methodologies, experimental configurations, and network conditions. To ensure 
the reliability of our analysis, this study adopts a structured and systematic data collection 
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approach. Multiple experimental runs were conducted under controlled conditions to minimize 
random fluctuations, and performance metrics were averaged to reduce the impact of outliers. 

Additionally, standardized network topologies were used to ensure consistency across tests. By 

carefully designing the methodology to limit measurement inconsistencies, this study provides a 

more accurate and reproducible comparison of the POX and RYU controllers. 
 

In summary, gaining a comprehensive understanding of the QoS and performance characteristics 

of the SDN controllers, such as POX and RYU, is essential for making informed decisions when 
selecting the most appropriate controller for various network environments. Each SDN controller 

offers distinct features, performance metrics, and capabilities that impact critical aspects such as 

latency, throughput, scalability, and reliability. This research aims to conduct a thorough 
evaluation of the POX and Ryu controllers, systematically assessing their strengths and 

limitations in handling diverse network conditions. By analyzing their effectiveness in meeting 

QoS requirements, the study seeks to provide valuable insights into their suitability for different 

applications, ranging from small-scale deployments to large, complex network infrastructures. 
Further more, the findings of this research will contribute to a better understanding of how these 

controllers can address the evolving challenges and growing demands of modern networks, 

facilitating more efficient and optimized SDN implementations 
 

3. METHODOLOGY 
 

The QoS evaluation of the selected SDN controllers is divided into three distinct stages to ensure 

a structured and systematic approach. The first stage involves the design and implementation of 
the simulation environment. This was achieved using the Mininet [26] network simulator. In the 

second stage, controller rules are implemented in Python for both POX and RYU controllers and 

applied across all five topologies to enable effective network management. Finally, the third stage 
focuses on performance evaluation, where the controllers are assessed based on three critical 

parameters: throughput, delay (round-trip time), and jitter. 

 
Throughput, delay, and jitter were chosen as QoS parameters for comparison as these parameters 

are considered key QoS parameters. These parameters collectively define the performance and 

reliability of a network. Throughput measures the amount of data successfully transmitted over 

the network in a given period. Throughput directly affects the network's ability to handle traffic 
efficiently. Delay refers to the time taken for a packet to travel from the source to the destination. 

Lower delay is essential for real-time applications. Jitter represents the variability in packet delay 

over time. Low jitter or consistent delay is critical for maintaining the quality of real-time 
communications. 

 

3.1. Simulation Environment 
 

As mentioned above, Mininet was used as the simulation environment for this research. Mininet 

is a powerful tool for simulating OpenFlow-based networks. As an open-source platform, it 
provides comprehensive support for working with SDN networks. Mininet enables the emulation 

of an entire OpenFlow network on a single machine by creating a realistic virtual environment 

[27]. With Mininet, users can generate SDN components, configure them as needed, and integrate 

them into other networks. It supports interactions between key elements such as hosts, switches, 
con- trollers, and links. Networks can be customized through Python APIs for greater flexibility 

or constructed using the Command-Line Interface (CLI) for simpler topologies. Mininet is 

compatible with various SDN controllers, including POX and RYU controllers, making it a 
versatile option for researchers [28]. 
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The topologies are a fundamental component of this project, designed with varying architectures 
to enable comprehensive testing. Five distinct network topologies were created using MiniEdit, 

which is Mininet’s graphical user interface. Key Mininet components, such as the SDN 

controller, OpenFlow switches, and hosts, are integrated into MiniEdit to build and manage these 

topologies effectively. Fig. 2 shows the five topologies created on Mininet. 
 

Each topology includes an SDN controller that connects to all switches, enabling centralized flow 

control within the network. The five topologies from A to E were designed to represent networks 
of increasing complexity. These carefully designed topologies facilitate the evaluation and testing 

of SDN controller functionalities across diverse network structures. Details of each topology are 

given in the next section. 
. 

3.2. Controller Rules Implementation 
 
The second stage involves implementing controller rules for POX and Ryu using Python across 

all five network topologies. Python is the preferred programming language for both controllers 

due to its simplicity and compatibility. 
 

 
 

Figure 2 : Topologies Used for Data Collection 

 
The implementation begins by creating Python scripts using Visual Studio Code, an open-source 

development environment. Each topology is assigned a unique set of controller rules, resulting in 

a total of 10 Python scripts—five for POX and five for Ryu. These rules are tailored to the 

specific requirements of each controller, as their parameters and configurations differ. 
 

As mentioned above, Mininet was used to simulate the network. While Mininet excels at creating 

and visualising network topologies, its switches lack the inherent ability to establish connections 
with controllers as real switches do. The SDN controller bridges this gap by providing appropriate 

flow rules that enable the network to function effectively. These flow rules are manually crafted 

for each topology, ensuring precise communication between switches, hosts, and the controller. 
Topology-Specific Controller Implementation details are explained below. 

 

• Topology A: A basic setup with a single Layer 2 switch connected to two hosts (H1 and 

H2). The switch is directly connected to the controller, facilitating communication between 
the hosts via two distinct ports.  
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• Topology B: This topology includes two interconnected Layer 2 switches, each connected 
to two hosts. The controller links to both switches, enabling traffic flow between the hosts 

(H1 and H2 to H3 and H4, and vice versa). Each switch features three connections: two to 

the hosts and one to the other switch. 

 
• Topology C: An extension of Topology B, this network adds an additional Layer 2 switch 

(S2) between S1 and S3. Each of the three switches connects to two hosts and is 

interlinked. S1 and S3 each have three ports involved, while S2 has four. The controller 
connects to all three switches to manage flow effectively.  

 

• Topology D: This hierarchical or tree network introduces an extra layer of switches. Two 
Layer 3 switches are each connected to two Layer 2 switches, which in turn connect to two 

hosts each. The Layer 3 switches are interconnected, enabling inter-switch routing and 

seamless data packet traversal across the network. 

 
• Topology E: Similar to Topology D, this topology adds an extra Layer 3 switch (S2) 

between S1 and S3, simulating a more complex hierarchical network. The additional Layer 

3 switch enhances the network’s structure, combining Layer 3 and Layer 2 switches for 
efficient data flow. 

 

This stage is critical for integrating POX and Ryu controllers with the Mininet environment, 
enabling comprehensive testing and evaluation of SDN functionalities across diverse network 

topologies. Each topology’s tailored flow rules allow for an in-depth exploration of controller 

behaviour and network performance. 

 

3.3. Testing and Evaluation 
 
The third stage focuses on evaluating the performance of the POX and Ryu controllers across all 

five network topologies. With the testbed, network topologies, and controller flow rules carefully 

designed and implemented, this stage is dedicated to assessing the QoS and comparing the 

performance of the two SDN controllers. 
 

Each topology was tested using both POX and Ryu controllers, and data related to throughput, 

delay, and jitter were collected. By analysing these metrics for each topology and controller, the 
testing aimed to identify which controller demonstrates superior performance under different 

topologies. This comprehensive evaluation provides valuable insights into the capabilities of POX 

and Ryu, highlighting their strengths and suitability for different network scenarios. 

 

3.3.1. Throughput 

 

Measuring network throughput is a critical step in evaluating traffic efficiency, as it provides a 
clear understanding of the volume of transactions or requests successfully processed within a 

network. This metric is particularly vital for high-traffic applications, where performance and 

reliability are paramount. In the context of data transmission, network throughput refers to the 
amount of data successfully transferred from one point to another within a specified time frame. 

Throughput is commonly expressed in units such as bits per second (bps), megabits per second 

(Mbps), or gigabits per second (Gbps) (Burke, 2022).  

 
Throughput testing was conducted for each topology using the ‘iperf’a widely utilized tool 

capable of generating TCP and UDP data streams [29]. This tool can be used to measure the 

network’s throughput, providing insights into its performance and capacity to handle varying 
traffic loads. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.2, March 2025 

42 

3.3.2. Delay 
 

When evaluating network performance, two key types of delay are considered: Propagation Delay 

and Round-Trip Time (RTT). Propagation Delay refers to the time it takes for a data packet to 

travel from the source to the destination within a network. In contrast, RTT measures the total 
time required for a data packet to travel from the source to the destination plus the time it takes to 

receive an acknowledgement. RTT includes the propagation delay between two points. In this 

research, RTT was selected as the measure of delay for comparing POX and Ryu. Controllers 
with lower delays are generally more desirable, as they offer faster response times for 

transmitting data from the source to the destination and returning information to the source. 

 
RTT is typically measured in milliseconds (ms) using the ‘ping’ command in a command prompt. 

To evaluate the performance of the two controllers, a series of 10 pings were sent from one host 

to another for comparison. 

 

3.3.3. Jitter 

 

End devices communicate by exchanging packets of information, which are continuously 
transmitted over the network. Jitter refers to the variation in packet delay and can impact network 

performance. The faster the packets travel, the less significant the impact of jitter on network 

operations. Jitter is typically measured in milliseconds (ms) as the average variation in delay 
values observed in ping results. 

 

4. TEST RESULTS 
 

Throughput, delay, and jitter measurements were conducted between multiple pairs of hosts, 
including connections such as H1 to H2, H2 to H3, and other relevant host combinations within 

the network. These measurements were carried out to assess the performance and reliability of 

data transmission under various topologies. The collected data provides valuable insights into the 
performance of each controller. 

 

In the following subsections, a detailed presentation of the collected data is provided, along with a 

comprehensive analysis of the observed patterns. The results are analysed in terms of throughput, 
which measures the rate of successful data transfer; delay, which indicates the time taken for data 

to travel from the source to the destination;, and jitter, which captures variations in packet arrival 

times. Each metric is examined across different host pairs to understand network behaviour under 
varying network topologies and SDN controllers.. 

 

4.1. Throughput Comparison 
 

Tables 1 and 2 show the average throughput between different pairs of hosts in each topology. 

The results in these tables reveal notable differences in average throughput performance between 
the POX and RYU controllers across various network topologies. For Topology A, RYU 

demonstrates superior performance, achieving a significantly higher throughput of 70.00 Mbps 

compared to POX’s 55.75 Mbps for H1 to H2. In Topology B, RYU also outperforms POX, with 

more consistent throughput (56.20 and 56.10 Mbps for H1 to H2 and H2 to H3, respectively) 
compared to POX’s lower values (48.30 and 42.95 Mbps). However, in Topology C, the 

performance is mixed— while POX achieves higher throughput for H1 to H2 (51.50 Mbps versus 

RYU’s 38.85 Mbps), RYU outperforms POX on H2 to H6 (67.20 Mbps versus 40.35 Mbps). In 
Topology D, RYU generally provides better performance, particularly on H1 to H8 (71.85 Mbps 

compared to POX’s 56.50 Mbps). Conversely, POX demonstrates superior throughput in 
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Topology E, with consistently higher values across all paths (e.g., 63.05 Mbps for H4 to H5 and 
61.15 Mbps for H6 to H8) compared to RYU’s relatively lower values (36.70 Mbps for both 

paths). Overall, RYU excels in Topologies A and D, while POX shows strength in Topology E, 

highlighting differences in their performance characteristics under varying network 

configurations. 
 

Fig. 3 shows the overall average throughput for each topology under the POX and RYU 

controllers. These averages were calculated considering all pairs of hosts under each topology. 
 

Fig. 3 highlights that RYU outperforms POX in Topologies A, B, and D, with notable differences 

in average throughput. For example, in Topology A, RYU achieves 70 Mbps compared to POX’s 
55.75 Mbps, a clear improvement. Similarly, in Topology D, RYU leads with 57.92 Mbps, 

significantly higher than POX’s 48.09 Mbps. In Topology B, RYU maintains an advantage with 

56.15 Mbps versus POX’s 45.63 Mbps. 

 
However, POX demonstrates better performance in Topology E, achieving an average throughput 

of 55.03 Mbps compared to RYU’s much lower 37.21 Mbps. In Topology C, the two controllers 

exhibit comparable performance, with POX slightly ahead at 51.53 Mbps versus RYU’s 50.86 
Mbps. 

 

Overall, the results indicate that RYU provides superior throughput in most topologies. 
 

Table 1: Average Throughput Between Hosts (MBits/s) – POX 

 
 

Topology 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 55.75 - - - - - 

B 48.30 42.95 - - - - 

C 51.50 49.10 65.15 - 40.35 - 

D 41.60 57.15 38.80 43.90 50.60 56.50 

E 51.11 45.4 63.05 46.65 62.80 61.15 

 
Table 2 : Average Throughput Between Hosts (MBits/s) – RYU 

 
 

Topology 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 70.00 - - - - - 

B 56.20 56.10 - - - - 

C 38.85 48.35 49.05 - 67.20 - 

D 43.05 63.90 68.55 58.90 41.25 71.85 

E 41.35 39.05 36.70 36.70 33.40 36.05 

 

4.2. Delay Comparison 
 

Delay was measured between the hosts H1-H2, H2-H3, H4-H5, H6-H8, H2-H6, and H1-H8 (refer 

to 2 covering all applicable topologies. Tables 3 and 4 show the Round Trip Time (RTT) delay 
between pairs of hosts under each topology. Values shown in these tables are rounded off to two 

decimal places to display the tables clearly. 
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Table 3: Average Delay Between Hosts(ms) – POX 

 
 

Top. 

Pkt. 

Size 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 

 

 

B 

 

 
C 

 

 

D 

 

 

E 

128 0.13 - - - - - 

192 0.14 - - - - - 

256 0.23 - - - - - 

128 0.13 0.21 - - - - 

192 0.10 0.14 - - - - 

256 0.11 0.13 - - - - 

128 0.29 0.17 0.20 - 0.07 - 

192 0.17 0.22 0.18 - 0.08 - 

256 0.19 0.19 0.21 - 0.08 - 

128 0.19 0.20 0.15 0.27 0.18 0.17 

192 0.22 0.18 0.15 0.23 0.19 0.22 

256 0.18 0.23 0.24 0.17 0.21 0.17 

128 0.23 0.24 0.40 0.26 0.21 0.19 

192 0.19 0.32 0.27 0.31 0.25 0.31 

256 0.21 0.33 0.26 0.29 0.24 0.27 

 

 
 

Figure 3: Throughput Comparison 
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Table 4: Average Delay Between Hosts (ms) – RYU 

 
 

Top. 

Pkt. 

Size 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 

 

 

B 

 

 

C 

 

 
D 

 

 

E 

128 0.09 - - - - - 

192 0.08 - - - - - 

256 0.10 - - - - - 

128 0.12 0.15 - - - - 

192 0.13 0.22 - - - - 

256 0.15 0.15 - - - - 

128 0.12 0.11 0.15 - 0.17 - 

192 0.10 0.11 0.13 - 0.13 - 

256 0.11 0.15 0.18 - 0.14 - 

128 0.08 0.12 0.15 0.12 0.18 0.13 

192 0.11 0.12 0.16 0.11 0.13 0.17 

256 0.17 0.12 0.11 0.14 0.12 0.15 

128 0.11 0.11 0.11 0.14 0.14 0.13 

192 0.11 0.09 0.14 0.13 0.14 0.12 

256 0.14 0.16 0.14 0.15 0.11 0.18 

 
The overall average delay between two hosts for different packet sizes is shown in Fig.5. Values 

depicted in Fig.5 were calculated by averaging delays for different pairs of hists. 

 

The data demonstrates notable differences in average delays across topologies (A to E) and 
varying traffic loads (128, 192, and 256 Mbps) for the POX and RYU controllers. Overall, RYU 

consistently achieves lower delays compared to POX, indicating superior performance in 

handling network traffic. For both controllers, increasing traffic loads generally results in higher 
delays, a trend expected due to the greater strain on network resources. 

 

At a traffic load of 128 Mbps, RYU significantly outperforms POX across all topologies. The 
largest discrepancy is observed in Topology E, where RYU records a delay of 0.12387 seconds
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Table 5: Average Jitter Between  Hosts(ms) –POX 

 
 

Top. 

Pkt. 

Size 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 

 

 

B 

 

 

C 

 

 
D 

 

 

E 

128 0.08 - - - - - 

192 0.10 - - - - - 

256 0.21 - - - - - 

128 0.09 0.15 - - - - 

192 0.05 0.07 - - - - 

256 0.02 0.12 - - - - 

128 0.15 0.11 0.16 - 0.01 - 

192 0.14 0.12 0.11 - 0.01 - 

256 0.09 0.13 0.15 - 0.01 - 

128 0.13 0.11 0.05 0.12 0.07 0.12 

192 0.20 0.10 0.05 0.13 0.09 0.14 

256 0.06 0.18 0.20 0.09 0.13 0.10 

128 0.09 0.18 0.23 0.27 0.10 0.12 

192 0.18 0.32 0.17 0.20 0.20 0.31 

256 0.07 0.23 0.14 0.14 0.11 0.12 

 
Table 6: Average Jitter Between Hosts (ms)–RYU 

 
 

Top. 

Pkt. 

Size 

H1to 

H2 

H2to 

H3 

H4to 

H5 

H6to 

H8 

H2to 

H6 

H1to 

H8 

A 

 

 

B 

 

 

C 

 

 

D 

 
 

E 

128 0.04 - - - - - 

192 0.02 - - - - - 

256 0.03 - - - - - 

128 0.06 0.08 - - - - 

192 0.09 0.01 - - - - 

256 0.12 0.09 - - - - 

128 0.09 0.06 0.12 - 0.08 - 

192 0.03 0.05 0.09 - 0.06 - 

256 0.09 0.08 0.14 - 0.08 - 

128 0.02 0.06 0.06 0.04 0.21 0.05 

192 0.04 0.05 0.10 0.09 0.03 0.13 

256 0.08 0.04 0.03 0.04 0.04 0.12 

128 0.06 0.06 0.08 0.11 0.13 0.10 

192 0.03 0.02 0.10 0.08 0.11 0.10 

256 0.11 0.15 0.06 0.12 0.07 0.12 

 

compared to POX’s 0.25373 seconds, more than twice the delay. Even in Topology B, where the 
performance gap is smallest, RYU (0.13185 seconds) still surpasses POX (0.1704 seconds). 

Similar trends are evident at 192 Mbps, where RYU demonstrates significant improvements over 

POX, particularly in Topology E (0.12125 seconds vs. 0.2762 seconds). However, in Topology B, 
the difference narrows slightly, with RYU recording a delay of 0.1791 seconds compared to 

POX’s 0.1207 seconds, indicating some limitations of RYU under certain traffic conditions. 

 

At the highest traffic load of 256 Mbps, both controllers experience increased delays. RYU 
maintains its advantage in most topologies, particularly in Topology A, where it records a delay 

of 0.0995 seconds compared to POX’s 0.2275 seconds. Interestingly, in Topology B, POX 
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achieves a slightly lower delay of 0.1181 seconds, outperforming RYU’s 0.1482 seconds—a rare 
instance where POX proves more efficient under higher traffic conditions. 

 

Examining performance across topologies, RYU consistently demonstrates lower delays in 

Topologies A, C, D, and E across all traffic loads. In Topology A, RYU achieves delays below 
0.1 seconds under all traffic conditions, while POX records significantly higher delays, 

particularly at 256 Mbps (0.2275 seconds). In Topology C, RYU’s advantage is particularly 

evident at 192 Mbps, with a delay of 0.11775 seconds compared to POX’s 0.16155 seconds. In 
Topology D, both controllers exhibit similar trends, but RYU maintains lower delays at all traffic 

loads, particularly at 192 Mbps, where it records 0.13603 seconds compared to POX’s 0.1975 

seconds. Topology E highlights RYU’s dominance, particularly under higher traffic loads, where 
its delay at 256 Mbps (0.14688 seconds) is significantly lower than POX’s (0.26917 seconds). 

 

In summary, RYU demonstrates superior delay performance across most topologies and traffic 

loads, particularly in scenarios with heavier traffic and complex network configurations, such as 
Topology E. POX, however, performs competitively in specific scenarios, particularly in 

Topology B under higher traffic loads, where it achieves the lowest delay at 256 Mbps. These 

results suggest that the choice of controller should be informed by the specific network topology 
and expected traffic load, with RYU being a more suitable option for scenarios requiring low 

delays and high traffic efficiency. 

 

4.3. Jitter Comparison 
 

Jitter was measured between the hosts H1-H2, H2-H3, H4-H5, H6-H8, H2-H6, and H1-H8 (refer 
to 2 covering all applicable topologies. The average jitter between two hosts is shown in Fig.5. 

 

The analysis of average jitter across topologies A to E under different packet sizes (128, 192, and 
256 Bytes) for POX and RYU controllers highlights significant differences in performance. Jitter, 

a measure of packet delay variation, directly impacts the quality of service in networks. Across all 

scenarios, RYU demonstrates consistently lower jitter compared to POX, indicating better 

network stability and reliability. 
 

For 128 Byte packets, RYU significantly outperforms POX in all topologies. For instance, in 

Topology A, RYU records a jitter of 0.0383 seconds, which is less than half of POX’s 0.0833 
seconds. The largest performance gap is observed in Topology B, where RYU achieves a jitter of 

0.0704 seconds compared to POX’s 0.11835 seconds. Even in Topology E, where the values are 

closer, RYU (0.08995 seconds) maintains a clear advantage over POX (0.10128 seconds). This 

trend continues for 192 Byte packets, where RYU exhibits exceptionally low jitter, particularly in 
Topology A, with a value of 0.0219 seconds compared to POX’s 0.0951 seconds. In Topology C, 

RYU achieves a jitter of 0.05928 seconds, significantly better than POX’s 0.0943 seconds. 

Similarly, in Topology B, although the gap narrows, RYU still outperforms POX with jitter 
values of 0.04675 seconds and 0.05875 seconds, respectively. 

 

At the highest packet size of 256 Bytes, jitter increases for both controllers, reflecting the 
challenges of maintaining network stability under heavy traffic. However, RYU continues to 

deliver better performance in most scenarios. In Topology A, RYU records a jitter of 0.0342 

seconds, a stark contrast to POX’s 0.2116 seconds, highlighting RYU’s efficiency even under 

significant traffic loads. Similarly, in Topology D, RYU achieves 0.06018 seconds compared to 
POX’s 0.12545 seconds. Interestingly, in Topology B, POX performs competitively, achieving a 

jitter of 0.06595 seconds compared to RYU’s 0.1066 seconds. This is one of the few instances 

where POX outperforms RYU, suggesting its suitability in specific topologies under heavy 
traffic. 
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When analysed by topology, RYU demonstrates remarkable stability in Topologies A, C, and D. 

In Topology A, RYU consistently achieves jitter values below 0.04 seconds across all traffic 

loads, while POX’s jitter increases significantly, particularly for 256 Byte packets (0.2116 

seconds). In Topology C, RYU’s jitter remains significantly lower than POX’s at all traffic loads, 
demonstrating its superiority in this topology. Similarly, in Topology D, RYU maintains low jitter 

values, particularly for 256 Byte packets, where it records 0.06018 seconds compared to POX’s 

0.12545 seconds. Topology E also highlights RYU’s advantage, though the gap narrows slightly 
at higher traffic loads, with RYU recording 0.10368 seconds and POX 0.12545 seconds for 256 

Byte packets. 

 
Overall, RYU exhibits superior performance in minimising jitter across most topologies and 

traffic loads, with particular strengths in Topologies A, C, and D. POX, while generally less 

stable, demonstrates competitive performance in Topology B under higher traffic conditions. 

These findings suggest that RYU is better suited for scenarios requiring low jitter and consistent 
network performance, while POX may have advantages in specific topologies with unique traffic 

patterns. 

 

5. CONCLUSION 

 
This study systematically evaluated the Quality of Service (QoS) performance of the POX and 
RYU SDN controllers across five distinct network topologies using Mininet. Given the increasing 

reliance on SDN for efficient network management, understanding the QoS capabilities of 

different controllers is crucial for optimising performance across diverse network environments. 
Through a structured three-stage methodology—comprising simulation environment design, 

controller rule implementation, and performance evaluation—this research provided a 

comprehensive comparison of POX and RYU in terms of throughput, delay (round-trip time), and 
jitter. These metrics, which directly influence network efficiency and user experience, were 

carefully analysed across various topologies, ranging from a network with a single Layer 2 switch 

to more complex network structures. 

 
The results demonstrated that RYU consistently outperformed POX in terms of throughput, 

particularly in Topologies A, B, and D, suggesting its superior capability in handling high-

bandwidth applications. However, POX exhibited better performance in Topology E, indicating 
that its lightweight architecture can be advantageous in specific network conditions. In terms of 

delay, RYU achieved consistently lower latency across most scenarios, reinforcing its suitability 

for real-time applications such as VoIP and video streaming. Additionally, jitter analysis 
confirmed that RYU maintained more stable packet transmission, a critical factor for time-

sensitive communication. 

 

These findings align with existing research, which highlights RYU’s advanced traffic 
management capabilities and scalability compared to POX. However, POX remains a viable 

option for specific use cases, particularly where simplicity and ease of implementation are 

prioritised. The study underscores the importance of selecting an SDN controller based on the 
specific QoS requirements of the network, ensuring optimal performance for different 

applications. 

 

Future research could extend this work by incorporating additional SDN controllers, assessing 
performance under varying traffic loads, and exploring scalability in large-scale deployments. A 

deeper investigation into adaptive QoS mechanisms within SDN environments could further 

enhance network performance and reliability. By refining our understanding of SDN controller 
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capabilities, this research contributes to the ongoing development of more efficient, flexible, and 
resilient network infrastructures. 
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Figure 4: Delay Comparison 
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Figure5: Jitter Comparison 
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